Abstract

A numerical model is presented for the prediction of the three-dimensional stress field in an ice sheet due to temperature changes, as a function of time, under a variety of conditions. The model relies on two separate computer programs for the thermal and mechanical aspects of the problem. The thermal program uses the finite difference method to calculate the temperature distribution through the thickness of the ice cover under a variety of meteorological input conditions. The mechanical part of the analysis is conducted using the finite element method. A degenerate shell element is used, which is capable of modeling both bending and membrane behaviors of the ice cover. Relevant features of the finite element model include variable temperature and properties through the thickness, an elastic foundation representation of the underlying water, nonlinear constitutive behavior of the ice, temperature-dependent mechanical properties, flexibility of resisting structures, and boundary conditions representing a variety of shoreline types. Results are presented from simulations conducted during verification of the model. Included are simulations of uniaxial and biaxial laboratory tests on the thermal expansion of ice as well as three thermal events for which field data were available. Conclusions are presented concerning the analytical prediction of thermal ice forces.Key words: ice loads, thermal loads, ice mechanics, hydraulic structures, dams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.