Abstract

An elasto‐viscoplastic analysis of anisotropic plates and shells is undertaken by means of the finite element displacement method. A thick shell formulation accounting for shear deformation is considered and a layered approach is adopted in order to model property changes through the shell thickness. In order to avoid ‘locking’ behaviour as the shell thickness is reduced, the nine‐node Lagrangian and heterosis elements are introduced into the present model. Viscoplastic yielding is based on the Huber—Mises criterion extended by Hill for anisotropic materials. Time integration of the strain rate equations is accomplished by both explicit and implicit algorithms and special consideration is given to the evaluation of the viscoplastic strain increment for anisotropic situations. The computer code developed is demonstrated by application to a range of numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.