Abstract

The mitigation of single-event upsets (SEUs) in field-programmable gate arrays (FPGAs) is an increasingly important subject as FPGAs are used in radiation environments such as space. Triple modular redundancy (TMR) is the most frequently used SEU mitigation technique but is very expensive in terms of area and power costs. These costs can be reduced by sacrificing some reliability and applying TMR to only part of the FPGA design. Our Partial TMR method focuses on the most critical sections of the design and increases reliability by applying TMR to continuous sections of the circuit. We introduce an automated software tool that uses the Partial TMR method to apply TMR incrementally until the specified percentage of resources are utilized. Thus the tool gives the maximum reliability gain for the specified area cost. The amount of mitigation applied can be chosen at a very fine level, giving the designer maximum flexibility when producing the final mitigated design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.