Abstract

Chalk teaching is widely used in the world due to low cost, especially in some developing countries. During teaching with chalks, a large amount of fine chalk dust is produced. Although exposure to chalk dust is associated with respiratory diseases, the mechanism underlying the correlation between chalk dust exposure and adverse effects has not fully been elucidated. In this study, inflammation and its signal pathway in rat lungs exposed to fine chalk dust were examined through histopathology analyses; pro-inflammatory gene transcription; and protein levels measured by HE staining, RT-PCR, and western blot analysis. The results demonstrated that fine chalk dust increased neutrophils and up-regulated inflammatory gene mRNA levels (TNF-α, IL-6, TGF-β1, iNOS, and ICAM-1), and oxidative stress marker (HO-1) level, leading to the increase of inflammatory cell infiltration and inflammatory injury on the lungs. These inflammation responses were mediated, at least in part, via p38 and extracellular regulated proteinase (ERK) mitogen-activated protein kinase (MAPK) signaling mechanisms. In contrast, N-acetyl-L-cysteine (NAC) supplement significantly ameliorated these changes in inflammatory responses. Our results support the hypothesis that fine chalk dust can damage rat lungs and the NAC supplement may attenuate fine chalk dust-associated lung inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call