Abstract

In bandpass modulators, a 2N-order loop filter can lead to an N-order noise shaping in the band of interest. This caused a bandpass modulator with more complex structure than a lowpass modulator and increased the power consumption and area of the modulator. In this paper, we proposed a discrete-time bandpass modulator using the noise-coupling technique that only needs to a second- order loop filter to have a second-order noise shaping. To realize a noise coupled bandpass modulator, we need to implement Z -2 delay block in the analog domain, but the proposed modulator uses only Z -1 delay blocks to apply the noise coupling technique. This simplifies the structure of the modulator and reduces the power consumption, area, and nonlinearity of the modulator. The error in the coupling path is considered and the effect of it on the modulator resolution is analyzed. According to the simulation results, the proposed modulator results in SNR = 84.9 dB at 80 MHz sampling frequency, 200 KHz bandwidth and OSR = 200.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.