Abstract

It is generally believed that filling atoms randomly and uniformly distribute in caged crystals, such as skutterudite compounds. Here, we report first-principles and experimental discovery of a multiscale filling-fraction fluctuation in the RFe_{4}Sb_{12} system. La_{0.8}Ti_{0.1}Ga_{0.1}Fe_{4}Sb_{12} spontaneously separates into La-rich and La-poor skutterudite phases, leading to multiscale strain field fluctuations. As a result, glasslike ultralow lattice thermal conductivity approaching the theoretical minimum is achieved, mainly due to strain field scattering of high-energy phonons. These findings reveal that an uneven distribution of filling atoms is efficient to further reduce the lattice thermal conductivity of caged crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.