Abstract
There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations. One major challenge is the quality of data from TR-SFX measurements, which often faces issues like data sparsity, partial recording of Bragg reflections, timing errors, and pixel noise. To overcome these difficulties, conventionally, large volumes of data are collected and grouped into a few temporal bins. The data in each bin are then averaged and paired with the mean of their corresponding jittered timestamps. This procedure provides one structure per bin, resulting in a limited number of averaged structures for the entire time interval spanned by the experiment. Therefore, the information on ultrafast structural dynamics at high temporal resolution is lost. This has initiated research for advanced methods of analyzing experimental TR-SFX data beyond the standard binning and averaging method. To address this problem, we use a machine learning algorithm called Nonlinear Laplacian Spectral Analysis (NLSA), which has emerged as a promising technique for studying the dynamics of complex systems. In this work, we demonstrate the power of this algorithm using synthetic x-ray diffraction snapshots from a protein with significant data incompleteness, timing uncertainties, and noise. Our study confirms that NLSA is a suitable approach that effectively mitigates the effects of these artifacts in TR-SFX data and recovers accurate structural dynamics information hidden in such data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have