Abstract
Integration-by-parts (IBP) reduction is one of the essential steps in evaluating Feynman integrals. A modern approach to IBP reduction uses modular arithmetic evaluations at the specific numerical values of parameters with subsequent reconstruction of the analytic rational coefficients. Due to the large number of sample points needed, problems at the frontier of science require an application of supercomputers. In this article, we present a rational function reconstruction method that fully takes advantage of sparsity, combining the balanced reconstruction method and the Zippel method. Additionally, to improve the efficiency of the finite-field IBP reduction runs, at each run several numerical probes are computed simultaneously, which allows to decrease the resource overhead. We describe what performance issues one encounters on the way to an efficient implementation on supercomputers, and how one should co-design the algorithm and the supercomputer infrastructure. We present characteristic examples of IBP-reduction in the case of massless two-loop fourand five-point Feynman diagrams using a development version of FIRE and give illustrative examples mimicking the reduction of coefficients appearing in scattering amplitudes for post-Minkowskian gravitational binary dynamics. Редукция с использованием интегрирования по частям (IBP) является одним из существенных этапов при вычислении интегралов Фейнмана. Современный подход к IBP-редукции использует модулярную арифметику при конкретных числовых значениях параметров в пробных точках с последующей реконструкцией аналитических рациональных коэффициентов. Задачи, возникающие на переднем крае науки, требуют применения суперкомпьютеров из-за большого количества необходимых проб. В этой статье мы представляем алгоритм рациональной реконструкции, который в полной мере использует преимущества разреженности, объединяя сбалансированный алгоритм реконструкции и алгоритм Зиппеля. Кроме того, для повышения эффективности редукции в модулярной арифметике при каждом запуске одновременно вычисляется несколько числовых проб, что позволяет сокращать потребляемые ресурсы. Мы описываем, какие проблемы появляются на пути к эффективной реализации на суперкомпьютерах и как следует совместно проектировать алгоритмы и соответствующую суперкомпьютерную инфраструктуру. Представлены характерные примеры IBP-редукции в случае безмассовых двухпетлевых четырехточечных и пятиточечных диаграмм Фейнмана с использованием частной версии FIRE, а также показательные примеры редукции, имитирующие редукцию коэффициентов, появляющихся в амплитуде рассеяния в рамках постминковской гравитационной бинарной динамики.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have