Abstract

This work is devoted to the study of nanosized polymer polyvinylidene fluoride (PVDF) thin ferroelectric films (two-dimensional ferroelectrics) and their composites with graphene layers, using molecular dynamics methods to (1) study and calculate the polarization switching time depending on the electric field and film thickness, (2) study and calculate the polarization switching time depending on changes of the PVDF in PVDF-TrFE film, and (3) study the polarization switching time in PVDF under the influence of graphene layers. All calculations at each MD run step were carried out using the semi-empirical quantum method PM3. A comparison and analysis of the results of these calculations and the kinetics of polarization switching within the framework of the Landau–Ginzburg–Devonshire theory for homogeneous switching in ferroelectric polymer films is carried out. The study of the composite heterostructures of the “graphene-PVDF” type, and calculations of their polarization switching times, are presented. It is shown that replacing PVDF with PVDF-TrFE significantly changes the polarization switching times in these thin polymer films, and that introducing various graphene layers into the PVDF layered structure leads to both an increase and a decrease in the polarization switching time. It is shown that everything here depends on the position and displacement of the coercive field depending on the damping parameters of the system. These phenomena are very important for various ferroelectric coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call