Abstract

In this paper, for the first time, a novel ferroelectric schottky barrier tunnel FET (Fe SB-TFET) is proposed and investigated. The Fe SB-TFET consists of ferroelectric gate stack with highly doped pocket at the source/drain and channel interface. In addition, for the suppression of ambipolar leakage current (IAMB), gate-drain underlap is employed. By using ferroelectric gate stack, we effectively amplified the applied gate voltage to enhance electric field for the reduction of tunneling barrier width at the source side schottky barrier. As a result, the increased tunneling probability improves the device performance in terms of high ION, high ION/IOFF ratio, reduced IAMB and low subthreshold swing (SS) as compared to the conventional SB-TFET having double pocket. We also investigate the influence of highly doped pocket (HDP) doping concentration and length on the device performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call