Abstract
Ferroelectric capacitors having Pt bottom and top electrodes and a ferroelectric film of composition PbZr0.51Ti0.49O3 (PZT) were fabricated and investigated. The PZT films of thicknesses varying from 0.12 to 0.69 μm were prepared by organometallic chemical-vapor deposition. Annealed capacitors were investigated by capacitance, hysteresis, and pulse switching measurements. It is found that the thickness dependence of the reciprocal capacitance, the coercive voltage, and the polarization measured by pulse switching can all be explained by a blocking layer model, in which a dielectric layer of thickness dbl and relative permittivity εbl is situated between the PZT film and an electrode. It is shown that (i) the coercive field is independent of thickness having a value of 2.4 V/μm; (ii) the ratio εbl/dbl is in the range 20–28 nm−1; (iii) the voltage across the blocking layer is proportional to the polarization, Vbl=cP, where c=4.1±0.5 V m2/C; and (iv) the polarization depends on the electric field in the PZT layer, independent of thickness. Pulse switching endurance measurements showed that in the saturation range the fatigue for these ferroelectric capacitors is determined by the pulse voltage and is independent of the thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.