Abstract

Molecular ferroelastics have received particular attention for potential applications in mechanical switches, shape memory, energy conversion, information processing, and solar cells, by taking advantages of their low-cost, light-weight, easy preparation, and mechanical flexibility. The unique structures of organic-inorganic hybrid perovskites have been considered to be a design platform for symmetry-breaking-associated order-disorder in lattice, thereby possessing great potential for ferroelastic phase transition. Herein, we review the research progress of organic-inorganic hybrid perovskite ferroelastics in recent years, focusing on the crystal structures, dimensions, phase transitions and ferroelastic properties. In view of the few reports on molecular-based hybrid ferroelastics, we look forward to the structural design strategies of molecular ferroelastic materials, as well as the opportunities and challenges faced by molecular-based hybrid ferroelastic materials in the future. This review will have positive guiding significance for the synthesis and future exploration of organic-inorganic hybrid molecular ferroelastics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call