Abstract

Simple SummaryDue to climate change and pests as result of maize monoculture, the need of diversification of crop rotation forces researchers to look for alternative grains for animal nutrition. Furthermore, grain fermentation may increase the nutritional value of feed and, simultaneously, decrease costs of feed conservation because the necessity for grain drying and associated energy costs are reduced. In this context, the cultivation and integration of early harvested and fermented sorghum grain in pig diets might be an interesting strategy for the substitution of maize. Therefore, we tested the nutritional value of three varieties of fermented sorghum grains with gradual differences in total dry matter, in a Latin-Square experiment comprising growing pigs. Results indicated there is a potential for improving the nutrient digestibility of sorghum-based pig diets by using early harvested and fermented whole sorghum grain with lower dry matter concentration. Especially the need for inorganic phosphorus supplementation and, hence, the fecal phosphorus emissions were significantly reduced.This study investigated the effects of sorghum ensiled as whole grains with different dry matter concentrations on the apparent total tract digestibility (ATTD) of energy, crude nutrients and minerals in growing pigs. Whole grain sorghum batches with varying dry matter (DM) concentrations of 701 (S1), 738 (S2) and 809 g kg−1 (S3) due to different dates of harvest from the same arable plot, were stored in air-tight kegs (6 L) for 6 months to ensure complete fermentation. Subsequently, 9 crossbred barrows (34.6 ± 1.8 kg; (Duroc x Landrace) × Piétrain)) were used in a 3 × 3 Latin square feeding experiment. Diets were based on the respective sorghum grain silage and were supplemented with additional amino acids, minerals and vitamins to meet or exceed published feeding recommendations for growing pigs. The ATTD of gross energy, dry matter, organic matter, nitrogen-free extracts, and crude ash were higher in S1 compared to S3 treatments (p ≤ 0.05), while S2 was intermediate. Pigs fed S1 showed significantly higher ATTD of phosphorus (P) compared to all other groups while ATTD of calcium was unaffected irrespective of the feeding regime. In conclusion, growing pigs used whole grain sorghum fermented with a DM concentration of 701 g kg−1 (S1) most efficiently. In particular, the addition of inorganic P could have been reduced by 0.39 g kg−1 DM when using this silage compared to the variant with the highest DM value (809 g kg−1).

Highlights

  • Sorghum represents the fifth most important grain worldwide and could replace significant amounts of maize in poultry and pig diets [1,2,3]

  • Milled feeds and feces were subject to analyses of dry matter (DM), organic matter (OM), crude ash (Ash), crude protein (CP), crude fiber (CF), starch and ether extract after acid hydrolysis (EEh ) according to standard procedures [25]

  • The amount of NH3 decreased with decreasing DM content, while the CP contents were similar between batches

Read more

Summary

Introduction

Sorghum represents the fifth most important grain worldwide and could replace significant amounts of maize in poultry and pig diets [1,2,3]. The nutritional composition of sorghum is very similar to maize, while it is, from a botanical point of view, more drought-resistant, has lower demands on soil quality and is not affected by pests like the western corn rootworm European sorghum varieties have been cultivated to be low in tannins over the last 30 years. It is not possible to register new sorghum varieties unless their tannin concentration is lower than 30 g kg−1 [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call