Abstract
We demonstrate a technique for femtosecond time-resolved optical pump-probe spectroscopy that allows to scan over a nanosecond time delay at a kilohertz scan rate without mechanical delay line. Two mode-locked femtosecond lasers with approximately 1 GHz repetition rate are linked at a fixed difference frequency of ΔfR=11kHz. One laser delivers the pump pulses, the other provides the probe pulses. The relative time delay is linearly ramped between zero and the inverse laser repetition frequency at a rate ΔfR, enabling high-speed scanning over a 1 ns time delay. The advantages of this method for all-optical pump-probe experiments become evident in an observation of coherent acoustic phonons in a semiconductor superlattice via transient reflectivity changes. A detection shot-noise limited signal resolution of 7×10−8 is obtained with a total measurement time of 250 s. The time resolution is 230 fs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have