Abstract

Background Analogous to vertebroplasty, cement-augmentation of the proximal femur (“femoroplasty”) could reinforce osteoporotic bones. This study was to evaluate (i) the feasibility of femoroplasty with a composite cement (Cortoss™), (ii) its influence on femoral strength by mechanical testing and (iii) the feasibility of stable osteosynthesis of the augmented fractured bones. Methods Nine human cadaveric femora were augmented with a composite bone cement, the surface heat generation monitored, and then tested biomechanically against their native contralateral control to determine fracture strength. Subsequently, thirteen reinforced and fractured femora were osteosynthetized by different implants and tested against their osteosynthetisized, non-augmented contralateral control. Findings Cement could be injected easily, with a moderate temperature rise. A positive correlation between BMD and fracture load and a significant increase in fracture load (+43%) of the augmented femora compared to their native controls (6324 N and 4430 N, respectively) as well as a significant increase in energy-to-failure (+187%, 86 N m and 30 N m, respectively) was found. Osteosynthesis was possible in cement-augmented femora. Osteosynthetisized femora showed equivalent strength to the intact controls. Interpretation Augmentation of the proximal femur with composite bone cement could be of use in prophylaxis of fractures in osteoporotic femurs. Osteosynthesis of the fractured augmented bones is a challenging procedure but has a good chance to restore strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.