Abstract

We study the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of known perturbations. The feedback law is determined by solving a Linear-Quadratic optimal control problem. The observation is the laminar-to-turbulent transition location linearized about its stationary position, the control is a suction velocity through a small slot in the plate, the state equation is the linearized Crocco equation about its stationary solution. This article is the continuation of [7] where we have studied the corresponding Linear-Quadratic control problem in the absence of perturbations. The solution to the algebraic Riccati equation determined in [7], together with the solution of an evolution equation taking into account the nonhomogeneous perturbations in the model, are used to define the feedback control law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.