Abstract
The linear quadratic optimal control problem under quadratic constraints is an optimization problem over a generally non-convex set. Yakubovich [8] and Megretski [4] have studied this problem, and they show how it may be translated into a two-stage, convex optimization problem. In this paper we study the linear quadratic control problem under quadratic constraints for generalized first-order systems. As in the state-space case the linear quadratic control problem without quadratic constraints may be solved in terms of a linear matrix inequality. Subsequently, we use the results from [8] to derive a linear matrix inequality characterizing the linear quadratic optimal behaviour under quadratic constraints.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have