Abstract

Strictly layered feed-forward neural networks are explored as recognition tools for energy deposition patterns in a calorimeter. This study is motivated by possible applications for on-line event selection. Networks consisting of linear threshold units are generated by a constructive learning algorithm, the Patch algorithm. As a non-constructive counterpart the back-propagation algorithm is applied. This algorithm makes use of analogue neurons. The generalization capabilities of the neural networks resulting from both methods are compared to those of nearest-neighbour classifiers and of Probabilistic Neural Networks implementing Parzen-windows. The latter non-parametric statistical method is applied to estimate the optimal Bayesian classifier. For all methods the generalization capabilities are determined for different ways of pre-processing of the input data. The complexity of the feed-forward neural networks studied does not grow with the training set size. This favours a hardwired implementation of these neural networks as any implementation of the other two methods grows linearly with the training set size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.