Abstract

Although significant progress has been made in Chinese Named Entity Recognition (NER) methods based on deep learning, their performance often falls short in few-shot scenarios. Feature enhancement is considered a promising approach to address the issue of Chinese few-shot NER. However, traditional feature fusion methods tend to lead to the loss of important information and the integration of irrelevant information. Despite the benefits of incorporating BERT for improving entity recognition, its performance is limited when training data is insufficient. To tackle these challenges, this paper proposes a Feature Enhancement-based approach for Chinese Few-shot NER called FE-CFNER. FE-CFNER designs a double cross neural network to minimize information loss through the interaction of feature cross twice. Additionally, adaptive weights and a top-k mechanism are introduced to sparsify attention distributions, enabling the model to prioritize important information related to entities while excluding irrelevant information. To further enhance the quality of BERT embeddings, FE-CFNER employs a contrastive template for contrastive learning pre-training of BERT, enhancing BERT’s semantic understanding capability. We evaluate the proposed method on four sampled Chinese NER datasets: Weibo, Resume, Taobao, and Youku. Experimental results validate the effectiveness and superiority of FE-CFNER in Chinese few-shot NER tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.