Abstract

In this paper, we aim to explore an uncharted territory, which is Chinese multimodal named entity recognition (NER) with both textual and acoustic contents. To achieve this, we construct a large-scale human-annotated Chinese multimodal NER dataset, named \texttt{CNERTA}. Our corpus totally contains 42,987 annotated sentences accompanying by 71 hours of speech data. Based on this dataset, we propose a family of strong and representative baseline models, which can leverage textual features or multimodal features. Upon these baselines, to capture the natural monotonic alignment between the textual modality and the acoustic modality, we further propose a simple multimodal multitask model by introducing a speech-to-text alignment auxiliary task. Through extensive experiments, we observe that: (1) Progressive performance boosts as we move from unimodal to multimodal, verifying the necessity of integrating speech clues into Chinese NER. (2) Our proposed model yields state-of-the-art (SoTA) results on \texttt{CNERTA}, demonstrating its effectiveness. For further research, the annotated dataset is publicly available at \url{http://github.com/DianboWork/CNERTA}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.