Abstract
For deep learning’s insufficient learning ability of a small amount of data in the Chinese named entity recognition based on deep learning, this paper proposes a named entity recognition of local adverse drug reactions based on Adversarial Transfer Learning, and constructs a neural network model ASAIBC consisting of Adversarial Transfer Learning, Self-Attention, independently recurrent neural network (IndRNN), Bi-directional long short-term memory (BiLSTM) and conditional random field (CRF). However, of the task of Chinese named entity recognition (NER), there are only few open labeled data sets. Therefore, this article introduces Adversarial Transfer Learning network to fully utilize the boundary of Chinese word segmentation tasks (CWS) and NER tasks for information sharing. Plus, the specific information in the CWS is also filtered. Combing with Self-Attention mechanism and IndRNN, this feature’s expression ability is enhanced, thus allowing the model to concern the important information of different entities from different levels. Along with better capture of the dependence relations of long sentences, the recognition ability of the model is further strengthened. As all the results gained from WeiBoNER and MSRA data sets by ASAIBC model are better than traditional algorithms, this paper conducts an experiment on the data set of Xinjiang local named entity recognition of adverse drug reactions (XJADRNER) based on manual labeling, with the accuracy, precision, recall and F-Score value being 98.97%, 91.01%, 90.21% and 90.57% respectively. These experimental results have shown that ASAIBC model can significantly improve the NER performance of local adverse drug reactions in Xinjiang.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.