Abstract

Band-edge (hνmax=3.17-3.18 eV at T=293 K) injection electroluminescence (IEL) characteristics of 4H-SiC pn structures as a function of doping, electron irradiation, temperature, and current are presented. The intensity of the UV band increases with temperature in the range 290-800 K (with an activation energy Ea of about 90 meV), which is observed for the first time in a wide range of current densities from 9 A/cm2 up to 2∙104 A/cm2. This effect is a fundamental feature of the band-edge IEL in SiC pn structures. The dependence of the intensity L on the current is of the power-law type, L~Jm; at high currents m≈1 at T=650-800 K. This result is probably the first direct observation of the diffusion current in SiC pn structures. The rise in the intensity of the band-edge IEL with increasing temperature and its decrease upon irradiation are probably due to the corresponding change in the lifetime of nonequilibrium carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call