Abstract

The technologies applied to the analysis of the Three Mile Island accident were examined in a feasibility study of gamma spectrometry of molten core material from the Fukushima Daiichi Nuclear Power Station unit 1, 2, and 3 cores for special nuclear material accountancy. The focus is on low-volatile fission products and heavy metal inventory analysis, and the fundamental characteristics of gamma-rays from fuel debris with respect to passive measurements. The inventory ratios of the low-volatile lanthanides, 154Eu and 144Ce, to special nuclear materials were evaluated by the entire core inventories in units 1, 2, and 3 with an estimated uncertainty of 9%–13% at the 1σ level for homogenized molten fuel material. The uncertainty is expected to be larger locally owing to the use of the irradiation cycle averaging approach. The ratios were also evaluated as a function of burnup for specific fuel debris with an estimated uncertainty of 13%–25% at the 1σ level for units 1 and 2, and most of the fuels in unit 3, although the uncertainty regarding the separated mixed oxide fuel in unit 3 would be significantly higher owing to the burnup dependence approach. Source photon spectra were also examined and cooling-time-dependent data sets were prepared. The fundamental characteristics of high-energy gamma-rays from fuel debris were investigated by a bare-sphere model transport calculation. Mass attenuation coefficients of fuel debris were evaluated to be insensitive to its possible composition in a high-energy region. The leakage photon ratio was evaluated using a variety of parameters, and a significant impact was confirmed for a certain size of fuel debris. Its correlation was summarized with respect to the leakage photopeak ratio of source 154Eu. Finally, a preliminary study using a hypothetical canister model of fuel debris based on the experience at Three Mile Island was presented, and future plans were introduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call