Abstract
BackgroundAmyloid plaque in the brain is associated with a wide range of neurodegenerative diseases such as Alzheimer's and Parkinson's and defined as aggregates of amyloid fibrils rich in β-sheet structures. New methodWe report a label-free method based on small-angle X-ray scattering (SAXS) to estimate amyloid load in an intact mouse head with skull. The method is based on recording and analyzing the X rays elastically scattered from the β-sheets of amyloid plaques in a mouse head at angles smaller than 10° and energies between 30 and 45 keV. The method is demonstrated by acquiring the spectral SAXS data of an amyloid model and an excised head from a wild-type mouse for 600 s. ResultsWe captured the distinct scattering peaks of the amyloid plaques at momentum transfer (q) of 6 and 13 nm−1 associated with β-sheet structure. We first show linear correlation between the mass fraction of the amyloid target and the area under the peak (AUP) of the scattering curve. We report results for estimating amyloid load in a fixed mouse head by recovering the characteristic scattering signal from the amyloid target situated at various locations. The coefficient of variation in the amyloid load estimate is found to be less than 10%. Comparison with existing methodsThere are no previously described label-free X-ray methods for the estimation of amyloid load in an intact head. ConclusionsWe demonstrated the feasibility of a label-free method based on SAXS to potentially estimate brain amyloid in small animals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.