Abstract
Small-angle x-ray scattering (SAXS) imaging may have the potential to image β-amyloid plaques in vivo in the brain without tracers for assessment of Alzheimer’s disease (AD). We use a laboratory SAXS system for planar imaging of AD model and control mouse brains slices to detect regions with high density of amyloid plaques. These regions were validated with histology methods. Using Monte Carlo techniques, we simulate SAXS computed tomography (SAXS-CT) system to study the potential of selectively differentiating amyloid targets in mouse and human head phantoms with detailed anatomy. We found contrast between amyloid and brain tissue at small q (below 0.8 nm−1) in the neocortex region of the transgenic brain slices as supported by histology. We observed similar behavior through planar SAXS imaging of an amyloid-like fibril deposit with a 0.8 mm diameter at a known location on a wild type mouse brain. In our SAXS-CT simulations, we found that 33-keV x rays provide increase plaque visibility in the mouse head for targets of at least 0.1 mm in diameter, while in the human head, 70-keV x rays were capable of detecting plaques as small as 2 mm. To increase radiation efficiency, we used a weighted-sum image visualization approach allowing the dose deposited by 70-keV x rays per SAXS-CT slice of the human head to be reduced by a factor of 10 to 71 mGy for gray matter and 63 mGy for white matter. The findings suggest that a dedicated SAXS-CT system for in vivo amyloid imaging in small animals and humans can be successfully developed with further system optimization to detect regions with amyloid plaques in the brain with a safe level of radiation dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.