Abstract

Protein crystallographers are nowadays regular users of synchrotron radiation (SR) facilities for several applications. The goal of majority of users is simply to extract more accurate, higher resolution data from existing crystals; they use monochromatic radiation and the rotation method, in order to get a complete survey of the reciprocal space in a short time. In fact the brilliance of SR is essential, due to the weak scattering power of the samples, and because of their sensibility to radiation damage. Over the last few years, however, a general increase of interest for measurements at multiple wavelengths, which exploit the anomalous dispersion for the phase problem (multiwavelength anomalous diffraction--MAD), has generated the need of intense tuneable sources. For these applications, the emphasis is on accurate measurements of the small differences between the intensities of Bragg reflections at various energies across the absorption edge of an element present in the sample. The macromolecular diffraction beamline at ELETTRA, which is now running routinely since spring 1995, has been designed to provide a high flux--highly collimated tuneable X-rays source in the spectral range between 4 and 25 keV. The radiation source is the 57-pole wiggler, which delivers a very intense radiation up to 25 keV, and is shared and used simultaneously with the small angle X-ray scattering (SAXS) beamline. The front-end filter system has a cut-off energy at about 4 keV. The beamline optics consists of a pseudo-channel-cut double-crystal monochromator followed by a double focusing toroidal mirror. The tunability and the stability of the monochromator allows the user to perform MAD experiments, and for this purpose, a fluorescence probe for the exact calibration of the absorption edge is available on-line. The experimental station is based on an imaging plate area detector from MarResearch, with a sensible area of 345 mm in diameter. A cooled N2-stream is available to cool the sample crystal in order to reduce the radiation damage. SAXS is an experimental technique used to derive structural information about supra-molecular assemblies, amorphous materials and partly ordered systems (e.g. size and shape of large molecules). The high-flux SAXS beamline at ELETTRA is mainly intended for time-resolved studies on fast structural transitions in the sub-millisecond time region in solutions and in partly ordered systems, triggered by external or process parameters, with a SAXS resolution between 10 and 1400 A in real space. The source is the already mentioned 57-pole and the SAXS beamline accepts three discrete energies of its spectrum, namely 5.4, 8 and 16 keV. The beamline optics consists of a flat double-crystal monochromator and a double focusing toroidal mirror. A multi-purpose sample stage, movable along an optical table in order to optimise the sample to detect distance, allows to perform fast time-resolved relaxation studies based on temperature- or pressure-jumps as well as stopped flow experiments. Moreover, the users have option to install their own specialised sample surrounding equipment. The optimisation of the beamline with respect to high-flux and consequently high-flux density, allows to perform the following experiments: low contrast solution scattering, grazing incidence surface diffraction, micro-spot scanning, X-ray fluorescence analysis, time-resolved studies > or = 11 microseconds, simultaneous small- and wide-angle measurements on gels, liquid crystals, biopolymers, amorphous materials, muscles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call