Abstract
Magnetic iron oxide (Fe 2O 3, maghemite) nanoparticle-coated micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microcapsules were fabricated via a combined system of “Pickering-type” emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using Fe 2O 3 nanoparticles as a particulate emulsifier and a dichloromethane (CH 2Cl 2) solution of PLGA as an oil phase. The Fe 2O 3 nanoparticle-coated PLGA microcapsules were fabricated by the evaporation of CH 2Cl 2 from the emulsion, and then bare-PLGA microcapsules were prepared by the removal of the Fe 2O 3 nanoparticles using HCl aqueous solution. The two types of microcapsules were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. SEM with energy dispersive analysis system (EDS) study confirmed that, there is negligibly small amount of Fe 2O 3 in the bare-PLGA microcapsules after washing with HCl aqueous solution. Moreover, a possible mechanism for the formation of the microcapsules was proposed. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microcapsules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.