Abstract

The properties of mucus in a person with asthma can alter with disease process so that it may lead to the airway embolism. Fe 2O 3 nanoparticles can be used for drug delivery. Up till now, however, little is known about how the Fe 2O 3 nanoparticles influence the properties of airway mucus. In this study, Fe 2O 3 nanoparticles were dispersed with ultrasound, and the morphological properties were measured with scanning electron microscope, atomic force microscope and nanometer laser particle size and zeta potential analyzer. Then the dispersed Fe 2O 3 nanoparticles were added to the simulated asthma airway mucus with different final concentration (0.03, 0.3, and 0.4 mg/mL). The measurements of flow curve, yield stress, large amplitude oscillatory shear (LAOS) and shock scanning were carried out with a rotational rheometer. Experimental results showed that the Fe 2O 3 nanoparticles reduced the zero shear viscosity of simulated asthma airway mucus. With increase of shear rate, the wind speed of mucus was reduced. The yield stress of simulated asthma airway mucus was 19.0 Pa, but the yield stresses of experimental group (0.03, 0.3 and 0.4 mg/mL) were 17.0, 0.99, and 0.7 Pa, respectively. The results showed that the viscoelastic modulus of asthma airway mucus treated with Fe 2O 3 nanoparticles were changed obviously as measured with large amplitude scanning and frequency scanning. By adopting the method of optical phase microscopy, we found that different structures of simulated airway mucus were absorbed. The results showed Fe 2O 3 nanoparticles distroyed mucus structure. The experimental results proved that Fe 2O 3 nanoparticles could change the rheological characteristics of simulated asthma airway mucus. This experimental result would lay a foundation for the further development of airway mucus sticky agent based on the function of Fe 2O 3 nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call