Abstract
In this study, four different promising two-layer composite coatings on titanium substrates with antibacterial properties were investigated. Two different types of antibacterial agents were used to impart antibacterial properties to the coatings: antibiotic amikacin (in three different concentrations) and zinc. Chitosan, which also has antibacterial properties, was used as a carrier layer for amikacin on a calcium phosphate coating incorporating zinc. This combination should enable long-term antibacterial properties of a bone implant and thus prevent potential complications during wound healing due to bacterial contamination. To examine the physico-chemical properties of the samples, the elemental, chemical and phase compositions, the thickness and the wettability of the coatings were investigated. The release of amikacin from the chitosan coatings was investigated using high-performance liquid chromatography. Antibacterial activity of the prepared coatings was evaluated against five hospital bacteria strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Klebsiella pneumoniae) and one strain from the microbial strain collection (methicillin-resistant Staphylococcus aureus, ATCC 43300). To investigate the cell toxicity of the composite coating, cell adhesion, proliferation and osteogenic differentiation were tested with mesenchymal stem cells. According to the results, the composite coatings with an amikacin concentration of 5.0 and 7.5 percent by weight have the best biological and antibacterial properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.