Abstract
Excessive consumption of saturated fatty acids creates a debilitating cellular environment that hinders the normal function and survival of osteoblasts, contributing to bone metabolic disorders such as osteoporosis. The FDA-approved polypeptide PTH 1-34 is a well-established therapy for post-menopausal osteoporosis, yet its protective effects in a palmitic acid (PA)-rich hyperlipidemic environment are not well understood. This study investigates the impact of PTH 1-34 on PA-induced cellular responses in osteoblasts. Experiments were conducted on mouse and human-derived osteoblasts as well as C57BL/6J male mice. PA was found to suppress osteoblast differentiation, increase apoptosis, and disrupt autophagy, and thereby impair cellular health. Conversely, PTH 1-34 enhanced cellular health by counteracting these effects. At the molecular level, PTH 1-34 exerted its bioactivity by modulating PTH signaling components such as cAMP and CREB. Impaired osteogenic differentiation was restored by modulating bone-anabolic genes. PTH 1-34 also improved mitochondrial health by preserving mitochondrial membrane potential and maintaining the Bax/Bcl2 ratio, thereby improving cellular viability. Additionally, PTH 1-34 regulated autophagic processes, as evidenced by balanced p62 and LC3 levels, further validated using the autophagy inhibitor Bafilomycin A1. In vivo studies in C57BL/6J male mice corroborated these findings. PTH 1-34 reversed the PA action by maintaining osteoblast number and function. This study establishes the protective role of PTH 1-34 in safeguarding osteoblasts from lipotoxicity caused by excessive PA accumulation, highlighting its potential repurposing for patients with lipid-induced skeletal dysfunctions. The new data underscores the therapeutic versatility of the FDA-approved polypeptide PTH 1-34 in managing lipid-related bone health issues.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have