Abstract

By manipulating the additional degrees of freedom of multiphase machines, inherent to this type of machine, fault-tolerant control strategies are able to keep multiphase drives in service after one or more open-phase faults (OPFs). Therefore, multiphase machines controlled by finite control set model predictive control (FCS-MPC) strategies are an excellent fit for critical systems, where reliability and excellent dynamic performance are necessary. However, the existing fault-tolerant FCS-MPC strategies typically require considerable changes to the structure of the control algorithm when transitioning between healthy and fault-tolerant modes of operation. Therefore, this article proposes a novel fault-tolerant predictive current control (FT-PCC) strategy with minimal reconfiguration requirements for the six-phase permanent magnet synchronous machine (PMSM) drives. The proposed method only requires the adjustment of current references during fault-tolerant operation and keeps the structure of the control algorithm unchanged. To validate this FT-PCC strategy, several simulation and experimental results are presented for different OPF scenarios, in which the excellent performance obtained with the proposed method is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call