Abstract

A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. The conceptually simplest mechanism for correcting errors in a cellular automaton is to determine the next state of a cell by taking a majority vote among its neighbors (including the cell itself, if necessary to break ties). We are interested in which regular two-dimensional tessellations can tolerate faults using this mechanism, when the fault rate is sufficiently low. We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We completely classify regular two-dimensional tessellations as to whether they can tolerate combined transient and manufacturing faults, transient faults but not manufacturing faults, or not even transient faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.