Abstract

Using Hilbert–Huang transform (HHT) and coherence analysis, a signature extraction method for testing analog and mixed-signal circuits is proposed in this paper. The instantaneous time–frequency signatures extracted with HHT technique from the measured signal of circuits under test (CUT) are used for faults detection that is implemented through comparing the signatures of faulty circuits with that of the fault-free circuit. The coherence functions of the instantaneous time–frequency signatures and its integral help to test faults in the faulty dictionary according to the minimum distance criterion. The superior capability of HHT-based technique, compared to traditional linear techniques such as the wavelet transform and the fast Fourier transform, is to obtain the subtle time-varying signatures, i.e., the instantaneous time–frequency signatures, and is demonstrated by applying to Leapfrog filter, a benchmark circuit for analog and mixed-signal testing, with 100% of F.D.R (fault detection rate) in the best cases and with the least 24.2% of F.L.R. (fault localization rate) with one signature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.