Abstract
A structurally novel metabolite, fatuamide A (1), was discovered from a laboratory cultured strain of the marine cyanobacterium Leptolyngbya sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction. The planar structure of fatuamide A was elucidated by integrated NMR and MS/MS analysis, and a combination of bioinformatic and computational approaches was used to deduce the absolute configuration at its eight stereocenters. A putative hybrid PKS/NRPS biosynthetic gene cluster responsible for fatuamide A production was identified from the sequenced genomic DNA of the cultured cyanobacterium. The biosynthetic gene cluster possessed elements that suggested fatuamide A binds metals, and this metallophore property was demonstrated by native metabolomics and indicated a preference for binding copper. The producing strain was found to be highly resistant to toxicity from elevated copper concentrations in culture media.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have