Abstract

BackgroundCancer stem cells (CSCs) behave as their malignant counterparts, but persist after treatment, and possess properties that allow them to interact with their environment. Itraconazole, an antifungal agent, also has a role in suppressing tumor progression, but its effects in regulating tumor cell stemness remain unclear. This study aimed to evaluate the effects of itraconazole on A549 and NCI-H460 human lung cancer cell stemness in vitro.Material/MethodsA549 and NCI-H460 human lung cancer cells and BEAS-2B normal bronchial epithelial cells were cultured with and without itraconazole. Cell viability was evaluated. The expression of stem cell markers, CD133, ATP binding cassette subfamily G member 2 (ABCG2), and aldehyde dehydrogenase 1 (ALDH1), were measured by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Sphere-forming cells were evaluated in vitro.ResultsItraconazole reduced the expression of stemness molecules CD133, ABCG2, and ALDH1 in A549 and NCI-H460 human lung cancer cells, and the numbers of sphere-forming cells were reduced. However, itraconazole had little effect on cell viability but enhanced the chemosensitivity of A549 and NCI-H460 cells. Itraconazole inhibited Wnt signaling. Re-activation of Wnt signaling restored itraconazole-mediated inhibition on A549 and NCI-H460 cell stemness.ConclusionsItraconazole altered the stemness characteristics of A549 and NCI-H460 human lung cancer cells by suppressing Wnt signaling but did not affect cell viability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call