Abstract
The fatigue crack growth behavior of the weld heat-affected zone (HAZ) of type 304 stainless steel in high temperature water which simulates the boiling-water reactor environment was investigated to clarify the effects of welding residual stress, cyclic frequency f and thermal aging on crack growth rate. A lower crack growth rate of the HAZ than of the base metal was observed in both the high temperature water and the ambient air caused by the compressive residual stress. The crack closure point was measured in the high temperature water. The effect of the welding residual stress on the crack growth rate of the HAZ can be evaluated separately from the environmental effect through the crack closure behavior. The high temperature water increased the crack growth rate at a cyclic frequency of 0.0167 Hz but did not affect it much at 3 and 5 Hz. The crack growth behavior of the thermally aged HAZ at 400 °C for 1800 h was almost the same as that of the unaged material tested at 0.0167 and 5 Hz in the high temperature water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.