Abstract

The stress corrosion cracking (SCC) of structural materials used in boiling water reactors has been studied at relatively low hydrogen peroxide (H2O2) concentrations, around lOppb, which was assumed to be representative of the corrosion environment formed in hydrogen water chemistry (HWC). The 1/4T compact tension specimen was used for measurement of crack growth rates (CGRs) of sensitized type 304 stainless steel in high temperature and high purity water. Crack length was monitored by a reversing direct current potential drop method. Since H2O2 is easily decomposed thermally, a polytetrafluoroethylene-lined autoclave was used to minimize its decomposition on the autoclave surface. The CGR in the H2O2 environment differed from that in the O2 environment even though the electrochemical corrosion potential (ECP) for both conditions was the same. The data implied that the ECP could not be used as a common environmental deterministic parameter for SCC behavior at higher potentials for different oxidant condit...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call