Abstract

Surface ozone (O3) is a major air pollutant and draw increasing attention in the Pearl River Delta (PRD), China. Here, we characterize the spatial-temporal variability of ozone based on a dataset obtained from 57 national monitoring sites during 2013-2019. Our results show that: (1) the seasonal difference of ozone distribution in the inland and coastal areas was significant, which was largely affected by the wind pattern reversals related to the East Asian monsoon, and local ozone production and destruction; (2) the daily maximum 8hr average (MDA8 O3) showed an overall upward trend by 1.11 ppbv/year. While the trends in the nine cities varied differently by ranging from -0.12 to 2.51 ppbv/year. The hot spots of ozone were spreading to southwestern areas from the central areas since 2016. And ozone is becoming a year-round air pollution problem with the pollution season extending to winter and spring in PRD region. (3) at the central and southwestern PRD cities, the percentage of exceedance days from the continuous type (defined as ≥3 days) was increasing. Furthermore, the ozone concentration of continuous type was much higher than that of scattered exceedance type (<3 days). In addition, although the occurrence of continuous type starts to decline since 2017, the total number of exceedance days during the continuous type is increasing. These results indicate that it is more difficult to eliminate the continuous exceedance than the scatter pollution days and highlight the great challenge in mitigation of O3 pollution in these cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call