Abstract

Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process. Interestingly, in this work, an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst (Pd/SiO2) by adding alkali metal potassium (K). A formidable promotion effect was observed when the K doping to Pd/SiO2 catalysts. It achieves a conversion rate of 93% for 270 ppmV of HCHO to harmless CO2 and H2O at a weight hourly space velocity (WHSV) of 300,000 mL/(g·hr) at 25°C. Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition, which not only stabilized Pd species on the carrier surface but also markedly enhanced its dispersal on the SiO2 carrier. The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO2 catalysts. The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover, which also contributed to elevating the electron density on the Pd sites. Meanwhile, the oxygen vacancies favored the O2 activation to form more reactive oxygen species participating in the HCHO oxidation reaction, thus improving the performance of Pd/SiO2 catalysts displayed for HCHO oxidation. This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call