Abstract

Reinforcement Learning, as one of the main approaches of machine learning, has been gaining high popularity in recent years, which also affects the vehicle industry and research focusing on automated driving. However, these techniques, due to their self-training approach, have high computational resource requirements. Their development can be separated into training with simulation, validation through vehicle dynamics software, and real-world tests. However, ensuring portability of the designed algorithms between these levels is difficult. A case study is also given to provide better insight into the development process, in which an online trajectory planner is trained and evaluated in both vehicle simulation and real-world environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.