Abstract

A new method of encoding flow velocity as image phase in a refocused steady-state free precession (SSFP) sequence, called steady-state phase contrast (SSPC), can be used to generate velocity images rapidly while retaining high signal. Magnitude images with refocused-SSFP contrast are simultaneously acquired. This technique is compared with the standard method of RF-spoiled phase contrast (PC), and is found to have more than double the phase-signal to phase-noise ratio (PNR) when compared with standard PC at reasonable repetition intervals (TRs). As TR decreases, this advantage increases exponentially, facilitating rapid scans with high PNR efficiency. Rapid switching between the two necessary steady states can be accomplished by the insertion of a single TR interval with no flow-encoding gradient. The technique is implemented in a 2DFT sequence and validated in a phantom study. Preliminary results indicate that further TR reduction may be necessary for high-quality cardiac images; however, images in more stationary structures, such as the descending aorta and carotid bifurcation, exhibit good signal-to-noise ratio (SNR) and PNR. Comparisons with standard-PC images verify the PNR advantage predicted by theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.