Abstract
To assess the feasibility of three-dimensional breathhold coronary magnetic resonance angiography (MRA) at 3.0T using the steady-state free precession (SSFP) sequence, and quantify the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) gains of coronary MRA from 1.5T to 3.0T using whole-body and phased-array cardiac coils as the signal receiver. Eight healthy volunteers were scanned on 1.5T and 3.0T whole-body systems using the SSFP sequence. Numerical simulations were performed for the SSFP sequence to optimize the flip angle and predict signal enhancement from 1.5T to 3.0T. Coronary artery images were acquired with the whole-body coil in transmit-receive mode or transmit-only with phased-array cardiac coil receivers. In vivo studies of the same volunteer group at both field strengths showed increases of 87% in SNR and 83% in CNR from 1.5T to 3.0T using a whole-body coil as the signal receiver. The corresponding increases using phased-array receivers were 53% in SNR and 92% in CNR. However, image quality at 3.0T was more variable than 1.5T, with increased susceptibility artifacts and local brightening as the result of increased B(0) and B(1) inhomogeneities. Coronary MRA at 3.0T using a three-dimensional breathhold SSFP sequence is feasible. Improved SNR at 3.0T warrants the use of coronary MRA with faster acquisition and/or improved spatial resolution. Further investigations are required to improve the consistency of image quality and signal uniformity at 3.0T.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.