Abstract
The aim of this work is to systematize the knowledge resulting from research on the impact of the feature selection on the quality of diagnostic procedures in the diagnosis of nonlinear systems. Particular attention was devoted to the selection of appropriate comparative criteria and optimization algorithms necessary for the selection of defects in the studied nonlinear systems, so that the inclusion of the elements in the process of detection and location of single and multiple catastrophic failures is possible to the highest degree. Basing on the research and simulations results, the fast, low-costs method for feature selection using new data quality indexes was invented and tested on real circuits examples. Streszczenie. Celem pracy jest usystematyzowanie wiedzy wynikającej z badan realnego wplywu selekcji cech na jakośc procedur wykrywania uszkodzen w diagnostyce ukladow nieliniowych. Szczegolna uwaga zostala poświecona na dobor wlaściwych kryteriow porownawczych i algorytmow optymalizacyjnych niezbednych w procesie wyboru atrybutow uszkodzen badanych ukladow nieliniowych tak, aby w jak najwiekszym stopniu mozliwe bylo uwzglednienie tolerancji elementow w procesie detekcji i lokalizacji jednokrotnych i wielokrotnych uszkodzen katastroficznych. Opierając sie na wynikach analiz i symulacji opracowano i przetestowano na przykladach, szybki w dzialaniu algorytm selekcji cech wykorzystujący nowe indeksy oceny jakości zbioru danych. (Prosta optymalizacja procesu selekcji cech w diagnostyce ukladow analogowych). of classifiers using neural networks to the heuristic methods based on evolutionary techniques. The problem of assessing the quality of the results of feature selection is similar to the problem of assessing the quality of clustering results as part of the pattern recognition algorithms. Quality indicators of data clustering are generally divided into external (supervised), relative (relative) and internal (unsupervised) (9). The latter group of quality index is best suited for use in the evaluation of the required data sets of attributes for the comparison of measurement in the diagnosis of electronic systems. Many
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.