Abstract

Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. The proposed method is a combination of variable splitting, the classical penalty technique and the optimal gradient method. Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call