Abstract

Tooth instance segmentation of dental panoramic X-ray images represents a task of significant clinical importance. Teeth demonstrate symmetry within the upper and lower jawbones and are arranged in a specific order. However, previous studies frequently overlook this crucial spatial prior information, resulting in misidentifications of tooth categories for adjacent or similarly shaped teeth. In this paper, we propose SPGTNet, a spatial prior-guided transformer method, designed to both the extracted tooth positional features from CNNs and the long-range contextual information from vision transformers for dental panoramic X-ray image segmentation. Initially, a center-based spatial prior perception module is employed to identify each tooth's centroid, thereby enhancing the spatial prior information for the CNN sequence features. Subsequently, a bi-directional cross-attention module is designed to facilitate the interaction between the spatial prior information of the CNN sequence features and the long-distance contextual features of the vision transformer sequence features. Finally, an instance identification head is employed to derive the tooth segmentation results. Extensive experiments on three public benchmark datasets have demonstrated the effectiveness and superiority of our proposed method in comparison with other state-of-the-art approaches. The proposed method demonstrates the capability to accurately identify and analyze tooth structures, thereby providing crucial information for dental diagnosis, treatment planning, and research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.