Abstract

Recent investigations revealed that monomethylmercury (MMHg) can be absorbed and accumulated by plants, i.e. rice crops, thus becoming an important route of human exposure to MMHg through diet. The increasing concern about this fact makes that appropriate analytical methods for Hg speciation in these samples are urgently required. Therefore, the aim of this work has been the development of a fast and sensitive method which enables the simultaneous determination of MMHg and inorganic Hg in rice and aquatic plants. The proposed methodology is based on the extraction of Hg species by closed-vessel microwave heating, subsequent derivatization by ethylation and analysis by gas chromatography coupled to atomic fluorescence detection via pyrolysis (GC-pyro-AFS). A careful optimization of the extraction, using both acid (6N HNO3) and alkaline (tetramethylammonium hydroxide, TMAH) extractants, and derivatization conditions has been carried out. Spiked and unspiked aquatic plants (Typha domingensis) and CRMs certified for Total-Hg (BCR-60, BCR-482 and NCS ZC73027, corresponding to aquatic plant, lichen and rice, respectively) have been used. Under the final optimized conditions the simultaneous determination of MMHg and inorganic Hg can be carried out in less than 40min with no tedious clean-up steps. Quantitative recoveries (from 92% to 101%) were obtained in aquatic plants (Typha domingensis) and CRMs spiked with known concentrations of MMHg. For unspiked BCR-60 and BCR-482, no statistically significant differences (p=0.05) were found in Total-Hg concentrations between those obtained by the sum of species and the certified values for both acid and alkaline extraction. For the analysis of low Hg polluted samples, an additional preconcentration step by evaporation under nitrogen stream was required but adequate blanks were only obtained for acid extraction. Detection limits in the low ng/g range (0.7–1.0ng/g) were consequently achieved for both Hg species in the case of acid extraction and the analysis of NCS ZC73027 gave satisfactory results without statistically significant differences between the found and certified values (p = 0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call