Abstract

In the present work, we propose a novel technical approach in time domain impedance spectroscopy enabling both enhanced time and current resolution by an improved data analysis and hardware setup. We introduce nonstationary time-to-frequency conversion methods such as short-time Fourier transform and wavelet transform resulting in an improved time resolution. The combination of a time domain impedance spectrometer with a patch-clamp amplifier enables the resolution of gigaohm impedance at low perturbation signal amplitudes. A fast impedance spectroscopy (FIS) setup is presented which is optimized for biophysical application of single ion channel measurements in supported biomembranes. The applicability and performance of the technique is first evaluated by simulations. It is then verified by measurements on model circuits which exhibit the characteristic key properties of single ion channel measurements. Here, FIS improves the time resolution by about three orders of magnitude down to milliseconds. The general aspects derived in this work are also valid in other fields, where the spectral information of a perturbation applied on a system and its response is analyzed, e.g., mechanical impedance spectroscopy and microrheology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.