Abstract

Electrochemical CO2 reduction with rationally designed copper-based electrocatalysts is a promising approach to reduce CO2 emission and produce value-added products. Grain boundaries and micron-strains inside catalysts have been proposed as active catalytic sites, while the controlled formation of these sites has remained highly challenging. In this work, we developed a strategy of creating high-density grain boundaries and micron-strains inside CuO electrocatalysts by fast cooling with liquid nitrogen. Compared to samples with slower cooling rates, the fast cooled CuO showed clear difference in their crystal domain sizes, micro-strain densities, and the chemisorption capacities of CO2 and CO. This micro-strain-rich CuO electrocatalyst exhibited a high total current density over 300 mA·cm−2, and an outstanding Faradaic efficiency for C2 products (with a majority to ethanol) at −1.0 V vs. reversible hydrogen electrode. Our work suggests a facile approach of tuning grain boundaries and micro-strains inside Cu-based electrocatalysts to scale up electrochemical CO2 reduction for high value-added products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.