Abstract
Simple SummaryThis study was conducted to characterise the caecal microbiota in two broiler management systems (fast and slow-growing) during the growing period, using 16S rRNA sequencing analysis. Because of the essential role of the caecal bacteria in poultry health and productivity, these data could be considered as a biomarker of health status and will make it possible to evaluate different treatments applied in animals. The main results demonstrated that microbiota is in constant development throughout the growing period for both management systems, and the most abundant bacteria groups are related to better productive performance and intestinal health.Caecal microbiota and its modulation play an important role in poultry health, productivity and disease control. Moreover, due to the emergence of antimicrobial-resistant bacteria, society is pressing for a reduction in antibiotic administration by finding effective alternatives at farm level, such as less intensified production systems. Hence, the aim of this study was to characterise the caecal microbiota in two different broiler management systems, fast and slow-growing, using 16S rRNA sequencing analysis. To this end 576 broilers were reared in two different management systems (fast and slow-growing). Results showed that Firmicutes represented the dominant phylum for both systems. At the onset, Proteobacteria was the second prevalent phylum for fast and slow-growing breeds, outnumbering the Bacteroidetes. However, during the rest of the production cycle, Bacteroidetes was more abundant than Proteobacteria in both groups. Finally, regardless of the management system, the most predominant genera identified were Oscillospira spp., Ruminococcus spp., Coprococcus spp., Lactobacillus spp. and Bacteroides spp. In conclusion, fast and slow-growing broiler microbiota are in constant development throughout rearing, being relatively stable at 21 days of age. Regarding the genus, it should be noted that the three most abundant groups for both systems, Ruminococcus spp., Lactobacillus spp. and Bacteroides spp., are related to better productive performance and intestinal health.
Highlights
Microbiota is defined as the microbial community, including commensal, symbiotic and pathogenic microorganisms, which colonise different areas of animals and have an important influence on animal health, productivity and disease control [1,2,3,4,5,6,7,8,9]
In order to further identify microbiota composition for both breeds, we focused on 33 genera, which were shown to be present at an average relative abundance of more than 0.5% in at least one sample group [45]
Our findings showed that there is an important biomarker of poultry health and productive performance [7,9,48]
Summary
Microbiota is defined as the microbial community, including commensal, symbiotic and pathogenic microorganisms, which colonise different areas of animals and have an important influence on animal health, productivity and disease control [1,2,3,4,5,6,7,8,9]. Due to the emergence of antimicrobial-resistant bacteria, society is pressing for a reduction in antibiotic administration by finding effective alternatives to control infectious diseases at farm level [12,13,14,15]. Some of these alternatives are feed additives (prebiotics, probiotics, symbiotics, organic acids, enzymes, phytogenics and metals), alternative medical treatments (antibacterial vaccines, immunomodulatory agents, antimicrobial peptides and bacteriophages) and, different, less intensified broiler management systems [16,17,18,19,20,21,22]. The beneficial effects of many of these alternatives have been demonstrated in vitro, the general consensus is that the effect of these products depends on the farm, farmer management and animal characteristics, such as the breed selected [11,14,23]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.