Abstract
For a set $P$ of $n$ points in the plane and an integer $k \leq n$, consider the problem of finding the smallest circle enclosing at least $k$ points of $P$. We present a randomized algorithm that computes in $O( n k )$ expected time such a circle, improving over previously known algorithms. Further, we present a linear time $\delta$-approximation algorithm that outputs a circle that contains at least $k$ points of $P$ and has radius less than $(1+\delta)r_{opt}(P,k)$, where $r_{opt}(P,k)$ is the radius of the minimum circle containing at least $k$ points of $P$. The expected running time of this approximation algorithm is $O(n + n \cdot\min((1/k\delta^3) \log^2 (1/\delta),k))$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.